8 research outputs found

    Learning-Based Ubiquitous Sensing For Solving Real-World Problems

    Get PDF
    Recently, as the Internet of Things (IoT) technology has become smaller and cheaper, ubiquitous sensing ability within these devices has become increasingly accessible. Learning methods have also become more complex in the field of computer science ac- cordingly. However, there remains a gap between these learning approaches and many problems in other disciplinary fields. In this dissertation, I investigate four different learning-based studies via ubiquitous sensing for solving real-world problems, such as in IoT security, athletics, and healthcare. First, I designed an online intrusion detection system for IoT devices via power auditing. To realize the real-time system, I created a lightweight power auditing device. With this device, I developed a distributed Convolutional Neural Network (CNN) for online inference. I demonstrated that the distributed system design is secure, lightweight, accurate, real-time, and scalable. Furthermore, I characterized potential Information-stealer attacks via power auditing. To defend against this potential exfiltration attack, a prototype system was built on top of the botnet detection system. In a testbed environment, I defined and deployed an IoT Information-stealer attack. Then, I designed a detection classifier. Altogether, the proposed system is able to identify malicious behavior on endpoint IoT devices via power auditing. Next, I enhanced athletic performance via ubiquitous sensing and machine learning techniques. I first designed a metric called LAX-Score to quantify a collegiate lacrosse team’s athletic performance. To derive this metric, I utilized feature selection and weighted regression. Then, the proposed metric was statistically validated on over 700 games from the last three seasons of NCAA Division I women’s lacrosse. I also exam- ined the biometric sensing dataset obtained from a collegiate team’s athletes over the course of a season. I then identified the practice features that are most correlated with high-performance games. Experimental results indicate that LAX-Score provides insight into athletic performance quality beyond wins and losses. Finally, I studied the data of patients with Parkinson’s Disease. I secured the Inertial Measurement Unit (IMU) sensing data of 30 patients while they conducted pre-defined activities. Using this dataset, I measured tremor events during drawing activities for more convenient tremor screening. Our preliminary analysis demonstrates that IMU sensing data can identify potential tremor events in daily drawing or writing activities. For future work, deep learning-based techniques will be used to extract features of the tremor in real-time. Overall, I designed and applied learning-based methods across different fields to solve real-world problems. The results show that combining learning methods with domain knowledge enables the formation of solutions

    Light Auditor: Power Measurement Can Tell Private Data Leakage Through IoT Covert Channels

    Get PDF
    Despite many conveniences of using IoT devices, they have suffered from various attacks due to their weak security. Besides well-known botnet attacks, IoT devices are vulnerable to recent covert-channel attacks. However, no study to date has considered these IoT covert-channel attacks. Among these attacks, researchers have demonstrated exfiltrating users\u27 private data by exploiting the smart bulb\u27s capability of infrared emission. In this paper, we propose a power-auditing-based system that defends the data exfiltration attack on the smart bulb as a case study. We first implement this infrared-based attack in a lab environment. With a newly-collected power consumption dataset, we pre-process the data and transform them into two-dimensional images through Continous Wavelet Transformation (CWT). Next, we design a two-dimensional convolutional neural network (2D-CNN) model to identify the CWT images generated by malicious behavior. Our experiment results show that the proposed design is efficient in identifying infrared-based anomalies: 1) With much fewer parameters than transfer-learning classifiers, it achieves an accuracy of 88% in identifying the attacks, including unseen patterns. The results are similarly accurate as the sophisticated transfer-learning CNNs, such as AlexNet and GoogLeNet; 2) We validate that our system can classify the CWT images in real time

    IoT Health Devices: Exploring Security Risks in the Connected Landscape

    Get PDF
    The concept of the Internet of Things (IoT) spans decades, and the same can be said for its inclusion in healthcare. The IoT is an attractive target in medicine; it offers considerable potential in expanding care. However, the application of the IoT in healthcare is fraught with an array of challenges, and also, through it, numerous vulnerabilities that translate to wider attack surfaces and deeper degrees of damage possible to both consumers and their confidence within health systems, as a result of patient-specific data being available to access. Further, when IoT health devices (IoTHDs) are developed, a diverse range of attacks are possible. To understand the risks in this new landscape, it is important to understand the architecture of IoTHDs, operations, and the social dynamics that may govern their interactions. This paper aims to document and create a map regarding IoTHDs, lay the groundwork for better understanding security risks in emerging IoTHD modalities through a multi-layer approach, and suggest means for improved governance and interaction. We also discuss technological innovations expected to set the stage for novel exploits leading into the middle and latter parts of the 21st century

    DeepAuditor: Distributed Online Intrusion Detection System for IoT devices via Power Side-channel Auditing

    Full text link
    As the number of IoT devices has increased rapidly, IoT botnets have exploited the vulnerabilities of IoT devices. However, it is still challenging to detect the initial intrusion on IoT devices prior to massive attacks. Recent studies have utilized power side-channel information to identify this intrusion behavior on IoT devices but still lack accurate models in real-time for ubiquitous botnet detection. We proposed the first online intrusion detection system called DeepAuditor for IoT devices via power auditing. To develop the real-time system, we proposed a lightweight power auditing device called Power Auditor. We also designed a distributed CNN classifier for online inference in a laboratory setting. In order to protect data leakage and reduce networking redundancy, we then proposed a privacy-preserved inference protocol via Packed Homomorphic Encryption and a sliding window protocol in our system. The classification accuracy and processing time were measured, and the proposed classifier outperformed a baseline classifier, especially against unseen patterns. We also demonstrated that the distributed CNN design is secure against any distributed components. Overall, the measurements were shown to the feasibility of our real-time distributed system for intrusion detection on IoT devices

    Feasibility of LED-Assisted CMOS Camera: Contrast Estimation for Laser Tattoo Treatment

    No full text
    Understanding the residual tattoo ink in skin after laser treatment is often critical for achieving good clinical outcomes. The current study aims to investigate the feasibility of a light-emitting diode (LED)-assisted CMOS camera to estimate the relative variations in tattoo contrast after the laser treatment. Asian mice were tattooed using two color inks (black and red). The LED illumination was a separate process from the laser tattoo treatment. Images of the ink tattoos in skin were acquired under the irradiation of three different LED colors (red, green, and blue) for pre- and post-treatment. The degree of contrast variation due to the treatment was calculated and compared with the residual tattoo distribution in the skin. The black tattoo demonstrated that the contrast consistently decreased after the laser treatment for all LED colors. However, the red tattoo showed that the red LED yielded an insignificant contrast whereas the green and blue LEDs induced a 30% (p < 0.001) and 26% (p < 0.01) contrast reduction between the treatment conditions, respectively. The proposed LED-assisted CMOS camera can estimate the relative variations in the image contrast before and after the laser tattoo treatment
    corecore